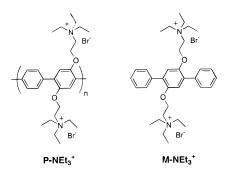
Amplified Fluorescence Quenching in a Poly(*p*-phenylene)-Based Cationic Polyelectrolyte


Benjamin S. Harrison, Michael B. Ramey, John R. Reynolds, and Kirk S. Schanze*

Department of Chemistry and Center for Macromolecular Science and Engineering University of Florida, Gainesville, Florida 32611-7200

> Received March 7, 2000 Revised Manuscript Received June 21, 2000


Application of fluorescent conjugated polymers to "amplified" sensing of chemical and biological analytes has received considerable recent attention.^{1–8} Fluorescence sensing is amplified by conjugated polymers because of the "molecular wire effect",^{1,2} which causes a polymer to be quenched by a considerably lower analyte concentration than its monomer analogue. Most sensor work has been carried out to date using polymers dissolved in an organic solvent;^{1,2,5-7} however, several recent reports feature fluorescent thin film sensors that operate by coming into contact with a liquid- or vapor-phase analyte.3,4 Although these studies demonstrate amplified quenching to allow trace detection of analytes, the systems are limited because the polymers only dissolve in organic solvents. A sensor would be more useful if it operates in an aqueous environment. This issue was addressed by a recent report that demonstrated fluorescence quenching of a water soluble sulfonatoalkoxy poly-(phenylene vinylene) polyanion by methyl viologen at nM concentrations.8

In the present contribution we describe fluorescence quenching of the water soluble, poly(*p*-phenylene)-based polycation, P-NEt₃⁺ dibromide by several anionic quenchers, including Ru(phen')₃⁴⁻ and Fe(CN)₆⁴⁻ in aqueous solution (phen' = 4,7-bis(4-sulfophenyl)-1,10-phenanthroline). P-NEt₃⁺ fluorescence is quenched by these anions with considerably higher efficiency compared to a terphenyl model compound, M-NEt₃⁺ dibromide. Amplified quenching of P-NEt₃⁺ arises because (1) ion-pairing enhances the concentration of the anionic quencher in the vicinity of the polyelectrolyte, and (2) the high mobility of the ¹ π , π^* exciton rapidly brings it into contact with the ion-paired quencher.⁹ We also establish that quenching of P-NEt₃⁺ by Ru(phen')₃⁴⁻ occurs via energy transfer by observing the metal complexes' photoluminescence when the excitation light is absorbed mainly by the polymer.

Polycation P-NEt₃⁺, prepared by Suzuki coupling,¹⁰ was fully characterized by NMR, elemental analysis and GPC which indicated $M_n = 12.4$ kD ($X_n = 28$, corresponding to over 50 phenylene rings) and PDI = 1.16.¹⁰ As illustrated in Figure 1a, in aqueous solution P–NEt₃⁺ features an absorption at $\lambda_{max} =$

- (1) Zhou, Q.; Swager, T. M. J. Am. Chem. Soc. **1995**, 117, 12593–12602. (2) Swager, T. M. Acc. Chem. Res. **1998**, 31, 201–207.
- (3) Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321-5322.

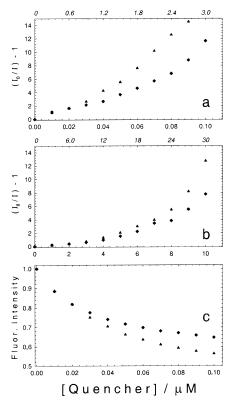


Figure 1. (a) UV–Visible absorption spectra of P–NEt₃⁺ (–) and Ru(phen')₃⁴⁻ (– –) in H₂O. Fluorescence of P–NEt₃⁺ in H₂O (– •• – ••). (b) Emission excitation spectrum with detector set at emission wavelength corresponding to Ru(phen')₃⁴⁻ MLCT emission ($\lambda_{em} = 610$ nm). (solid line): Ru(phen')₃⁴⁻ only, $c = 1 \ \mu$ M; (dashed line): P-NEt₃⁺ and Ru(phen')₃⁴⁻ both at $c = 1 \ \mu$ M.

330 nm and a strong blue fluorescence with $\lambda_{max} = 408$ nm ($\tau \approx$ 600 ps). These features are very similar to those of other PPPtype polymers indicating that the nominal photophysics of P-NEt₃⁺ is not strongly influenced by the presence of the quaternary ammonium side-groups.^{11–14} The fluorescence of $P-NEt_3^+$ in aqueous solution is quenched by a variety of anions at a very low concentration. Examples of this effect are illustrated in the Stern-Volmer (SV) plots shown in Figure 2a and 2b, which illustrate quenching of P-NEt₃⁺ by Ru(phen')₃⁴⁻ and Fe(CN)₆⁴⁻. The SV plots exhibit upward curvature and the quenching efficiencies depend strongly on the polymer concentration.¹⁵ Both of these features indicate that the quencher anions preassociate with P-NEt₃⁺ (i.e., quenching is static).¹⁶⁻¹⁸ Ru(phen')₃⁴⁻ and $Fe(CN)_6^{4-}$ quench the fluorescence of the monomer dication terphenyl model (M-NEt₃⁺), also by a static quenching mechanism. However, the quenching of the model is much less efficient-a large stoichiometric excess of the quencher is needed to significantly quench the fluorescence of N-NEt₃⁺.¹⁹ The fact that the anions quench M-NEt₃⁺ less efficiently than P-NEt₃⁺ indicates that the polymer chain amplifies the quenching.

- (4) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864–11873.
 (5) Wang, B.; Wasielewski, M. R. J. Am. Chem. Soc. 1997, 119, 12–21.
 (6) Jiang, B.; Sahay, S.; Jones, W. E., Jr. MRS Symp. Proc. 1998, 488,
- (7) Kimura, M.; Horai, T.; Hanabusa, K.; Shirai, H. Adv. Mater. **1998**, 10,
- (1) Kimura, M.; Horai, 1.; Hanabusa, K.; Shirai, H. *Adv. Mater.* **1998**, *10*, 459–462.
- (8) Chen, L.; McBranch, D. W.; Wang, H.-L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Nat. Acad. Sci. U.S.A. **1999**, *96*, 12287–12292.
- (9) Levitsky, I. A.; Kim, J.; Swager, T. M. J. Am. Chem. Soc. 1999, 121, 1466–1472.
- (10) Balanda, P. B.; Ramey, M. B.; Reynolds, J. R. *Macromolecules* **1999**, *32*, 3970–3978.
- (11) Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 36–37.
- (12) Rice, M. J.; Gartstein, Y. N. *Phys. Rev. Lett.* **1994**, *73*, 2504–2507.
 (13) Remmers, M.; Schulze, M.; Wegner, G. *Macromol. Rapid Commun.* **1996**, *17*, 239–252.
- (14) Kim, S.; Jackiw, J.; Robinson, E.; Schanze, K. S.; Reynolds, J. R.; Baur, J.; Rubner, M. F.; Boils, D. *Macromolecules* **1998**, *31*, 964–974.
- (15) SV quenching efficiencies obtained by "best fit" linear least-squares are as follows: [P-NEt₃⁺] = $1.0 \ \mu$ M, $K_{SV}(Ru(phen')_{3}^{4-}) = 1.4 \times 10^{8} M^{-1}$ and $K_{SV}(Fe(CN)_{6}^{4-}) = 9.3 \times 10^{7} M^{-1}$; [P-NEt₃⁺] = $10 \ \mu$ M, $K_{SV}(Ru(phen')_{3}^{4-})$ = $8.0 \times 10^{5} M^{-1}$ and $K_{SV}(Fe(CN)_{6}^{4-}) = 5.4 \times 10^{5} M^{-1}$.
 - (16) Keizer, J. J. Am. Chem. Soc. 1983, 88, 1494–1498.
- (17) Delaire, J. A.; Rodgers, M. A. J.; Webber, S. E. J. Phys. Chem. 1984, 88, 6219-6227.
- (18) Static quenching is confirmed by the fact that the fluorescence lifetime of $P-NEt_{s}^{+}$ does not vary with the quencher concentration.

10.1021/ja000819c CCC: \$19.00 $\,$ © 2000 American Chemical Society Published on Web 08/16/2000 $\,$

Figure 2. Stem–Volmer quenching plots for P-NEt₃⁺ in H₂O, (\blacktriangle) Ru(phen')₃⁴⁻ and (\blacklozenge) Fe(CN)₆⁴⁻. (a) [P-NEt₃⁺] = 1 μ M; (b) [P-NEt₃⁺] = 10 μ M. Italic numbers at the top of (a) and (b) indicate the ratio [quencher]/[polymer chain], where [polymer] = [repeat unit]/X_n. (c) Relative fluorescence intensity of adsorbed film of P-NEt₃⁺ as a function of added quencher to an aqueous solution that is in contact with film, (\bigstar) Ru(phen')₃⁴⁻ and (\blacklozenge) Fe(CN)₆⁴⁻.

There are several noteworthy features with respect to the P-NEt₃⁺ quenching data. First, given the short fluorescence lifetime of the polymer, the extraordinary quenching efficiencies clearly indicate that quenching involves an ion-pair between the small molecule tetra-anions and P-NEt3⁺.²⁰ Ru(phen')3⁴⁻ quenches more efficiently than $Fe(CN)_{6,4}^{4-}$ suggesting that the larger "amphiphilic" Ru-complex anion associates more strongly with P-NEt3⁺. Second, in the quenching studies carried out with $[P-NEt_3^+] = 1 \ \mu M$ (repeat unit concentration), greater than 90% quenching is observed at [quencher] $\approx 0.08 \ \mu$ M, which corresponds to approximately 12 repeat units per quencher. As such, the quenchers are present at 2:1 [quencher]:[polymer chain] ratio (Figure 2a), and on average binding of one or two quenchers per P-NEt₃⁺ chain effectively "turns off" the fluorescence of the entire polymer.²¹ This implies that in P-NEt₃⁺, the ${}^{1}\pi,\pi^{*}$ exciton diffuses along the polymer chain to the quencher on a time scale that is rapid compared with its lifetime (600 ps).9 Time-resolved fluorescence experiments were carried out to determine if the fluorescence decay of P-NEt₃⁺ in the presence of Ru(phen')₃⁴⁻ exhibits a "fast" decay component ($\tau \ll 600 \text{ ps}$) arising from the polymer-quencher ion pair. However, a fast decay component is

not observed, indicating that quenching is instantaneous on the time scale accessible with our instrumentation (200 ps). We conclude that exciton diffusion and quenching occurs with a rate in excess of 10^{10} s⁻¹.

Emission excitation spectroscopy indicates that quenching involves energy transfer from the P-NEt₃⁺¹ π,π^* exciton to the triplet metal-to-ligand charge transfer (³MLCT) state of Ru-(phen')₃⁴⁻. Thus, Figure 1b compares excitation spectra for MLCT emission at 610 nm from a solution containing 1 μ M Ru(phen')₃⁴ only, and for a solution of $Ru(phen')_3^{4-}$ and P-NEt₃⁺ where both the quencher and repeat unit concentration = 1 μ M. The significant aspect is that the excitation spectrum of the mixture displays considerably enhanced excitation efficiency in the UV region where P-NEt₃⁺ absorbs ($\lambda = 300-375$ nm). This feature establishes that light absorbed by P-NEt₃⁺ leads to emission from the MLCT state of Ru(phen') $_3^{4-}$. In essence the Ru(phen') $_3^{4-}$ that is ion-paired with the P-NEt₃⁺ chain acts as a low-energy photoluminescent trap for the highly mobile ${}^{1}\pi,\pi^{*}$ exciton. While the exciton is expected to be very mobile,^{1,9,22,23} long-range energy transfer may be facilitated by dipole-dipole (Förster) coupling between the P-NEt₃⁺ donor and the Ru(phen')₃⁴⁻ acceptor. Indeed, a computation based on the spectra and photophysical properties of the two chromophores indicates that the Förster transfer distance (R_0) is ≈ 40 Å.²⁴ Quenching by Fe(CN)₆⁴⁻ may also occur by energy transfer, however, since this complex does not photoluminesce it is not possible to confirm that the excited-state complex is produced by quenching.

Although we expected that increasing the P-NEt₃⁺ concentration would attenuate the efficiency by which the anions quench the polymer, the effect is larger than anticipated. Specifically, Ru(phen')₃⁴⁻ and Fe(CN)₆⁴⁻ quench the polymer approximately 100-fold less efficiently when [P-NEt₃⁺] = 10 μ M compared to that for [P-NEt₃⁺] = 1 μ M (compare Figure 2a and 2b). The decreased quenching efficiency may arise from aggregation of the polycation at higher concentration.

To demonstrate amplified quenching in a solid-state sensor, quenching studies were carried out with P-NEt₃⁺ thin films.^{25,26} Hydrophilic glass slides that had been immersed into an aqueous solution containing P-NEt₃⁺ (3 mM in repeat units) for 15 min followed by a rinse in distilled water were examined by absorption and photoluminescence spectroscopy. This analysis indicated the presence of a thin adsorbed P-NEt₃⁺ film (absorption, $\lambda_{max} = 339$ nm, $A_{max} = 0.011$; fluorescence, $\lambda_{max} = 410$ nm).²⁷ Photoluminescence from the film is quenched strongly when exposed to dilute solutions of Ru(phen')₃⁴⁻ or Fe(CN)₆⁴⁻. Figure 2c illustrates a plot of fluorescence intensity vs amount of quencher added to an aqueous solution that was in contact with an adsorbed film of P-NEt₃⁺. Detectable quenching is observed upon addition of less than 20 nM of either quencher.

Acknowledgment. This work was supported by grants from the National Science Foundation (K.S.S. and BSH, CHE-9901861) and AFOSR (J.R.R. and MBR, F49620-97-1-0232 and F49620-00-1-0047). We also acknowledge enlightening discussions with Professor David G. Whitten.

Supporting Information Available: Description of method used to determine association constant between P-NEt⁺ and Ru(phen')₃⁴⁻ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA000819C

- (22) Rothberg, L. J.; Yan, M.; Papadimitrakopoulos, F.; Galvin, M. E.;
 Kwock, E. W.; Miller, T. M. Synth. Met. **1996**, 80, 41–58.
 (23) Swager, T. M.; Gil, C. J.; Wrighton, M. S. J. Phys. Chem. **1995**, 99,
- 4886-4893. (24) Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cum-
- mings: Menlo Park, CA, 1978. (25) Baur, J. W.; Rubner, M. F.; Reynolds, J. R.; Kim, S. Langmuir 1999,
- (25) Batti, J. W., Kubier, M. F., Keynolds, J. K., Kini, S. Langmun 1999, 15, 6460–6469.

(27) On the basis of the absorption, we estimate that the film coverage is approximately 2.4×10^{-10} mol-cm⁻² (repeat unit), which is approximately equal to the coverage expected for a single monolayer of the polymer.

⁽¹⁹⁾ SV quenching efficiencies obtained by "best fit" linear least-squares are as follows: $[M-NEt_3^+] = 10 \ \mu M$, $K_{SV}(Ru(phen')_3^{4-}) = 24000 \ M^{-1}$ and $K_{SV}(Fe(CN)_6^{4-}) = 8900 \ M^{-1}$.

⁽²⁰⁾ The K_{SV} values obtained at $[P-NEt_3^+] = 1 \ \mu M$ imply second-order quenching rate constants that are in excess of the diffusion-controlled rate by a factor of 10⁸.

⁽²¹⁾ The association constant for Ru(phen')₃⁴⁻ binding to P-NEt₃⁺ has been determined independently ($K_b = 4.6 \times 10^5 \text{ M}^{-1}$, see Supporting Information). Based on this K_b we estimate that for a solution containing [P-NEt₃⁺] = 1 μ M and [Ru(phen')₃⁴⁻] = 80 nM (> 90% fluorescence quenching, see Figure 1a) the concentration of polymer-bound Ru(phen')₃⁴⁻ is ≈ 25 nM. Remarkably, the concentration of polymer-bound Ru(phen')₃⁴⁻ corresponds closely to the polymer chain concentration, i.e., ([repeat unit]/ X_n) = (1 μ M/28) = 36 nM, which indicates that > 90% quenching occurs when approximately one quencher is bound per chain.

⁽²⁶⁾ Liu, J. F.; Ducker, W. A. Langmuir 2000, 16, 3467-3473.